當前位置 > 首頁 > 新聞動態 > 科技前沿
我國學者研制出可快速降解水中抗生素新型催化劑
更新日期: 2019-01-28 作者: 孔令涛等 文章來源:《納米尺度》
打印 文本大小:    

 

 

抗生素滥用导致的生态环境和生物安全问题,已引起广泛关注。近期,中科院合肥物质科学研究院智能机械研究所刘锦淮课题组孔令涛研究团队设计出一种新颖可控的催化剂,实现了在宽酸碱度范围内对抗生素的高效降解。英国皇家化学会知名學術期刊《纳米尺度》(Nanoscale)日前發表了這一成果。

由于人和動物往往不能將服用的抗生素完全吸收,大量的抗生素以代謝産物甚至原態形式排入環境中,導致病原微生物産生耐藥性,進而使敏感菌耐藥性增強。四環素作爲一種典型的抗生素,在被人體攝入後,難以被腸胃徹底吸收,約75%的劑量以母體化合物的形式被人體排出,對生態環境和生物安全造成重大潛在威脅。

芬頓技術可以實現有機物的高效降解,但常規的芬頓反應需要在強酸條件下才能發揮作用,在實際應用中受到限制。近期,孔令濤研究團隊通過技術攻關,成功制備出一種形貌可控的催化劑,該催化劑對提高芬頓體系降解四環素的效率有顯著作用,還將反應的最優酸堿度範圍拓寬至中性。

據介紹,該項研究詳細討論了催化降解機理,推測出可能的四環素降解路線,解決了四環素的難降解問題,拓寬了類芬頓反應的酸堿度應用範圍,具有廣泛的應用前景。(來源:新華社 徐海濤 張紫赟)

 

Morphology-tunable WMoO nanowire catalysts for the extremely efficient elimination of tetracycline: kinetics, mechanisms and intermediates

 

Abstract  The presence of antibiotics in aquatic environments has attracted global concern. The Fenton system is one of the most popular methods for eliminating antibiotics in aquatic environments, but the existing Fenton system is limited due to the potential for secondary pollution, and the narrow pH range (~3–5). In this study, we report that the bottlenecks for high-strength tetracycline (TC) wastewater treatment under neutral conditions can be tackled well by a class of mixed-valence W/Mo containing oxides (WMoO-x) with tunable morphologies. Triethanolamine was selected as a structure-directing agent to control the morphologies of the catalysts going from ultrathin nanowires (UTNWs) to wire-tangled nanoballs (WTNBs). As a proof of concept, the most efficient catalyst in the batch samples, WMoO-1 ultrathin nanowires, was employed as a model material for TC degradation, in which the coordinatively unsaturated metal atoms with oxygen defects serve as the sites for TC chemisorption and electron transfer. As a result, 91.75% of TC was degraded in 60 min for the initial TC concentration of 400 μM. Furthermore, LC-MS analysis confirmed that the TC could be degraded to nontoxic by-products without benzene rings, and finally mineralized to CO2 and H2O. ICP-MS and cycle experiments showed the good stability and reusability of WMoO-1 UTNWs in the Fenton-like system. The findings of this work provide fresh insights into the design of nanoscale catalyst morphology and reaffirm the versatility of doping in tuning catalyst activity, extending the range of the optimal pH values to neutral conditions. This is significant for the expansion of the heterogeneous Fenton-like family and its application in the field of water treatment.

 

原文鏈接:https://pubs.rsc.org/en/content/articlepdf/2019/nr/c8nr08162j

 


电话:028-82890289   传真:028-82890288   Email:swsb@cib.ac.cn
邮政编码:610041   地址:中国四川省成都市人民南路四段九号
中國科學院成都生物研究所 ? 版权所有   蜀ICP备05005370号